
Trees From Files

In Lab 5 there is an algorithm for reading a tree from a data file. The
nodes are presented in the order of a postorder traversal of the tree.
Each line of the data file has the form

data leftbit rightbit
where the first bit is 1 if the node has a left child and the second bit
is 1 if the node has a right child.

For example
A 1 0

means that a node has data "A"; it has a left child but not a right
child.

The algorithm for reading a file consisting of such lines and building a
tree from it makes use of a stack of trees. At each step:

1. Get the next line of the file and separate into its data, left-bit
and right-bit components.

2. Build a new node for the line and insert the data into it.
3. If the right-bit is 1 pop the stack for the node's right child;

otherwise make a new empty tree for the right child.
4. If the left-bit is 1 pop the stack for the node's left child;

otherwise make a new empty tree for the node’s left child.
5. Push the node onto the stack

When you reach the end of the file there should be 1 item on the
stack --- the entire tree.

For example:
D 0 0
E 0 0
C 1 1
B 0 1
G 0 0
H 0 0
F 1 1
A 1 1

We read the first two lines: D and E have no
children so the singleton nodes are pushed onto
the stack with E on top of D. Node C has two
children so node C pops E as its right child, D as its
left:

C

ED

This node is pushed onto the stack; we'll call it
treeC.

D 0 0
E 0 0
C 1 1
B 0 1
G 0 0
H 0 0
F 1 1
A 1 1

We next read line B 0 1.
We make a node with data B and
pop treeC off the stack as B's
right child:

C

ED

B

We'll call this treeB. It gets pushed onto the stack.

Next nodes G and H are made as trees with
no children and are pushed onto the stack.
The stack is now

node H
node G
treeB

The next line of the file builds treeF with H as
its right child and G as its left:

D 0 0
E 0 0
C 1 1
B 0 1
G 0 0
H 0 0
F 1 1
A 1 1

F

HG

D 0 0
E 0 0
C 1 1
B 0 1
G 0 0
H 0 0
F 1 1
A 1 1

TreeF is pushed onto the stack above treeB. The
last line of the file tells us to build a new node
A. We pop treeF as its right child and treeB as
its left:

F

HGC

ED

B

A

